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SUMMARY 

A vorticitystreamfunction formulation for incompressible planar viscous flows is presented. The standard 
kinematic field equations are discretized using centred finite difference schemes and solved in a coupled way via 
a Newton-like linearization scheme. The linearized system of partial differential equations is handled through the 
restarting linear GMRES algorithm, preconditioned by means of an incomplete LU approximate factorization. 
The proposed solution technique constitutes a fast and robust algorithm for treating laminar flows at high 
Reynolds numbers. The pressure field is obtained at a subsequent step by solving a convection-diffusion 
equation in terms of the stagnation pressure, which presents certain advantages compared with the widely used 
static pressure Poisson equation. Results are shown for a wide variety of applications including internal and 
external flows. 

KEY WORDS: laminar flows; incompressible flows; vorticity-streamhction formulation; Krylov subspace methods, 
preconditioning 

INTRODUCTION 

During the last decades several techniques have been developed for the numerical integration of the 
laminar incompressible NavierStokes equations. Established formulations include those based on 
primitive variables and those using appropriate transformations such as the vorticitystreamfunction 
transformation, which is by far the one most commonly used. 

A method based on the solution of primitive flow variables provides a better insight into the 
physical conservation laws and their boundary conditions. Two- and three-dimensional flows may be 
handled equally well with similar algorithms. Turbulence models, when needed, are straightforward 
to implement. On the other hand, primitive variable formulations for incompressible flows lack a 
physically meaningful pressure equation. A Poisson pressure equation is often used' by applying the 
divergence operator on the momentum equation. If the pressure equation is formed directly on the 
discretized equations, the resulting system consisting of the pressure Poisson equation and the 
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momentum equations is equivalent to the original system of flow equations. A pressure correction 
term, which is related directly to the velocity field: offers an alternative possibility. This term, 
premultiplied by a linearized operator, appears finally in the continuity equation, providing the 
pressure equation that must be solved. The choice of the operator characterizes the different pressure 
correction techniques. When only diagonal entries are retained in the operator, the method is usually 
referred to as artificial c~mpressibility.~ Primitive variable formulations lead to velocity-pressure 
decoupling problems, which appear when collocated discretization schemes are employed. 
Staggering techniques4 offer a remedy but increase the complexity of programming. An alternative 
way to avoid decoupling problems is by spreaQng the pressure finite difference stencil5 or by 
choosing different interpolation levels for the velocity and the pressure, especially in finite solvers.6 
In all these techniques, however, the accuracy of the final solution is affected to some extent. 

The vorticity-streamfhction (Y-u) formulation offers a convenient alternative to primitive 
variable formulations for representing the kinematic nature of the incompressible Navier-Stokes 
equations. A fist advantage of this formulation is related to the automatic satisfaction of the 
continuity equation due to the use of the streamfunction, while the absence of a pressure gradient 
term in the vorticity equation eliminates problems related to the velocity-pressure decoupling. On the 
other hand, the closed form of the resulting system of equations makes it amenable to fast numerical 
integration using appropriate iterative or direct solvers. The above two reasons make the Y-a 
formulation very attractive for the accurate solution of high-Reynolds-number planar or 
axisymmetric Navier-Stokes equations. However, a few drawbacks still affect the Y-m formulations. 
Among them, the most important seems to be the difficulty in extending the method to 3D and to the 
transonic regime. Many improvements have been contributed by other researchers in order to 
overcome these shortcomings. As an example, Davis et al.' extended the method to three- 
dimensional viscous and inviscid flows, while Xu et aL8 offered solutions for the double-root problem 
when calculating density in transonic flows. However, three-dimensional or compressible flow 
problems are beyond the scope of this work. An additional drawback is the necessity to use 
approximate and iterative vorticity boundary conditions along solid walls. Habashi et aL9 improved 
the stability of both the scheme and the boundary condition formulation using a finite element 
analysis. 

In Y-u formulations the kinematic field is determined independently from the pressure field. The 
latter, if needed, is provided at a subsequent step by solving a Poisson-type equation similar to the 
one employed in primitive variable formulations. The proper specification of pressure boundary 
conditions is essential when a pressure Poisson equation is used. The role of pressure boundary 
conditions is discussed in detail by Gresho and Sani." 

The present work deals with the numerical integration of the laminar incompressible 2D Navier- 
Stokes equations using the Y-u formulation. The governing equations are discretized using second- 
order-accurate finite difference/finite volume schemes and body-fitted curvilinear co-ordinates. In an 
effort to add new information to the voluminous work published on Y-a techniques, the paper 
focuses on three topics which, in the authors's opinion, are still open. 

(a) The implementation of a vorticity boundary condition in non-regular meshes which is 
compatible with the finite volume scheme in use. 

(b) The accurate solution of the pressure field using the stagnation instead of the static pressure as 
the dependent variable. The stagnation pressure satisfies a convectiodifhsion equation 
whose right- hand side (RHS) and boundary conditions are directly related to the computed 
vorticity field. 

(c) The formulation of a fast and robust iterative scheme for the solution of the governing 
equations. This scheme is based on the restarting linear GMRES" algorithm, preconditioned 
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by scalar matrices whch result from the incomplete LU decomposition (modified strongly 
implicit procedure (MSIP)’’ algorithm) of the Laplacian and convection-diffusion operators. 

The accuracy and convergence properties of the proposed solver are investigated in representative 
internal and external flow computations for a wide range of Reynolds numbers. 

GOVERNING EQUATIONS 

When streamfunction and vorticity are introduced in the flow equations for incompressible two- 
dimensional flows, the resulting set of kinematic equations reads 

V = V x Y = V O  x N, 0 = NY, (1) 
(2) -V2Y = w, 0 = No = V x V, 

a0 1 
at Re 
- + v*vw - -v2w = 0, (3) 

where N is the unit vector normal to the flow plane. All equations are assumed to be non-dimensional, 
having been normalized by a suitable combination of a characteristic velocity and a characteristic 
length. The introduction of the streamfunction satisfies the continuity equation automatically, while 
the vorticity definition provides a linear Poisson equation for the streamfunction. Equation (3) which 
results from the momentum equations is a non-linear one, the Reynolds number being a measure of 
its non- linearity. It is worth noting that equations (1H3) are independent of the pressure field, which 
may be determined in a subsequent step once the kinematic field is known. 

It is a common practice to determine the pressure field from a Poisson equation resulting from the 
divergence of the momentum equation. This equation becomes 

(T ) 1 

P 
--v’p=v. -i-v*vv , 

where p is the constant fluid density and is solved by applying Neumann bounw conditions along 
the solid walls. For a given velocity field, local inaccuracies in calculating the second-order RHS 
derivatives may limit the convergence rate of this equation unless the integral constraint (Green’s 
theorem) is globally satisfied. 

In order to circumvent the above problem, a new pressure formulation based on the stagnation 
pressure transport equation is proposed. The latter is deduced from the combination of the inner 
product of the momentum equation with the velocity vector and the divergence of the momentum 
equation. The resulting convectioAiffusion equation in terms of the stagnation pressurep,, or rather 
the ratio pt/p, reads 

where, by definition, the stagnation pressure p ,  is 

pt =p+$pV2.  

The RHS term in (4) is computed easily and accurately since it merely depends on the vorticity, being 
one of the solution variables in the present formulation. Equations (3) and (4) may be numerically 
integrated using the same algorithm. Since equation (4) is solved for the stagnation pressure, an 
accurate prediction of flow losses is ensured. 
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Equations (1H3) constitute a closed system of equations governing the kinematic field. Once the 
kinematic field is known, equation (4) is a linear partial differential equation (PDE) which may 
provide the stagnation pressure field. Then the static pressure can be deduced from (5) .  

BOUNDARY CONDITIONS 

The elliptic Y-equation requires boundary conditions along the complete boundary of the 
computational domain. In internal aerodynamics Y is set equal to zero on the lower wall and 
equal to the total mass influx on the upper wall. In external aerodynamics Y is set to zero on the body, 
independently of the incidence angle, while Neumann boundary conditions are imposed along the 
inflow boundary. In both internal and external flows, fully developed flow conditions are imposed at 
the exit boundary. 

The boundary conditions for o are of the Dirichlet type along the inflow and solid boundaries. The 
wall vorticity values are determined from (2) in a way which is consistent with the discretization 
scheme employed. Further details will be given below. Fully developed vorticity conditions are 
imposed at the outflow boundary. 

A Neumann condition for the stagnation pressure is provided by projecting the momentum 
equation in the direction normal to the boundary. Along the solid walls the no-slip condition 
simplifies the aforementioned equation to 

where n and s are the normal and tangential directions to the wall. Unlike the commonly used static 
pressure Neumann boundary condition, the one used for the total pressure is directly related to the 
first derivative of the solution variable w, providing similar benefits in accuracy to those previously 
quoted. 

An alternative way to obtain a stagnation pressure boundary condition is by projecting the 
momentum equation in the direction tangential to the wall. This results in the expression 

which, then integrated along the solid walls, provides Dirichlet boundary conditions for pt. Equation 
(7) expresses the near-wall velocity profile curvature (&/an) in terms of the pressure derivative 
along the wall. The present method utilizes equation (6) instead of equation (7) as a boundary 
condition for the stagnation pressure field. 

NUMERICAL PROCEDURE 

Co-ordinate transformation 

To increase the accuracy and flexibility of the computational method, a body- fitted co-ordinate 
transformation is used in order to map the physical Cartesian plane ( x , y )  onto a transformed 
curvilinear one. In the transformed domain the Laplacian operator takes the form 
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where 

= g'.$' 2 = vu', Sij = gi%j, 
ar 

gi=G, 

are the covariant and contravariant orthonormal vector bases and metics respectively and 

J = lg, x g,l = [det(gv)]'/2 

is the Jacobian of the transformation. 
The convection operator yields 

( i  = 1,2), (9) 
V.V() = V'- .a( 1 

hi 
where V' are the contravariant velocity components related to the streamfunction derivatives through 
(l), namely 

with 8 the permutation tensor. 

Discretization 

The governing equations are discretized using centred finite difference/finite volume schemes. 
Assuming that Au' = 1 in the discrete computational plane, the Laplacian operator is discretized as 

1 
= J -{[m'( )lful - In'( )Ibul + [m2( )If$ - [n2( )lbuz), (1 1) 

(12) 

where 4, Si and si are respectively the backward, forward and centred derivative operators in the 
direction u'. Indices fu', bu', etc. are used to address mid-node locations (f forward, b: backward in 
directions u', u2) and mi( ) are the 'diffusive' fluxes. These fluxes are calculated at the mid-nodes of 
the grid using local metics. 

The convection operator is discretized in non-conservative form over the grid nodes using central 
differencing, namely 

U'( ) = gGj (  ), 
c +  

V*V( ) = Psi( ). (13) 

The Neumann boundary conditions are incorporated implicitly in the finite volume scheme by 
suitable modifications of the coefficients Jg"' appearing in the discrete Laplacian operator, as 
described by Holst. l3  

Discrete form of vorticity boundary condition on solid walls 

Special attention is paid to the implementation of a vorticity boundary condition which maintains 
the compatibility with the finite volume discretization scheme and is valid for arbitrary, not 
necessarily regular, meshes. The vorticity values on the solid walls result from (2), which is 
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discretized in the half-cell adjacent to the solid boundary. Let u2 = uL,, stand for a co-ordinate line 
which corresponds to a solid boundary (subscript 'w'). Along this line the no-slip condition implies 
that 

and consequently the fluxes JCr(Y) (i = 1, 2) vanish at any node or mid-node along the line 

According to the discretization scheme (1 1) and the aforementioned remarks, the Y-fluxes at the 
u2 = Ilk". 
mid-nodes around any boundary node yield 

[Jv'cy)lfuI = [ J U ' ( W I b d  = 09 
[Ju2(Y),2 + [JU2(Y)]b& = 2[JU2(Y),] = 0. 

The latter results by assuming that the fluxes are linearly distributed within a grid cell. This 
expression is used to eliminate the contribution of the mid-node (bu') lying outside the flow domain. 
As a consequence, the discrete form of (2) reads 

2 
0, = -(V2Y), = - - [JU2(Y)]fu2, 

Jw 
(14) 

constituting a Dirichlet boundary condition on o. Similar expressions are valid along the remaining 
solid walls. When a general non- orthogonal grid is used, the wall vorticity at each boundary node is 
linearly related to the streamfunction values of the surrounding six half-stencil nodes. The approach 
can be considered as an extension of existing fist-order- accurate vorticity boundary conditions (see 
discussion in References 14 and 15) to non-regular meshes. 

Numerical integration scheme 

coupled way by using a Newton iterative scheme. Let f = {Y, 
variables and R be the residual array which is expressed as 

The numerical integration of the kinematic field equations (2) and (3) is obtained in a strongly 
stand for the array of dependent 

0 V" * V - (l/Re)V 

where the superscript n denotes the iteration level. 
The Newton iteration step is formed as 

where 

f"" =f" + Af. 
The Jacobian matrix is given by 

1 V2 Z 
A21 A22 V x ( ) * V w "  I/At+V".V-(1/Re)V2 ' 
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including the Laplacian operator A1 1, the unsteady transport-diffision operator Azz (where a first- 
order time discretization scheme has been useed, with At being the time step) and also the cross- 
operator Azl  which results from the linearization of the convection part in (3) by taking also into 
account the definition (1). 

The linearized system of equations (16) is left preconditioned by a matrix P, which is an 
approximation of the inverse of the Jacobian matrix, after excluding the cross-term Azl  for the sake of 
simplicity. The simplification aims at avoiding block matrix inversion during the preconditioning. 
The preconditioner P reads 

In order to facilitate the preconditioning process, the diagonal block matrices in (18) are 
approximately factored using the MSIPI2 approximate factorization technique and P" finally becomes 

where PI  results from the incomplete LU decomposition of the Laplacian operator Azl  and PZz from 
the incomplete LU decomposition of the unsteady convection-diffision operator A22. The left- 
preconditioned form of (16) is 

R* i- DAf = 0,  (21) 
where 

R* = (PR)", D = [P(aR/af)]". 

Considering that D%Z, equation (21) may provide the updated values offusing the approximation 
Af= - R*; this approach can be classified as a coupled MSIP solver which handles the Y-w 
equations in a l l l y  implicit, partially coupled way, taking into account the non-diagonal identity 
terms of the Jacobian matrix. In order to increase the convergence rate of the solver, the original form 
of the matrix D is retained and the system of equations (21) is solved using the restarting linear 
GMRES(m) algorithm.'' It is worth mentioning that the streamfunction and vorticity boundary 
conditions are easily implemented in the restarting linear GMRES scheme owing to their linear form. 
The same basic numerical scheme is used by the authors in numerous CFD  application^.'^^" 

A similar numerical integration technique is adopted for the computation of the stagnation pressure 
field through (4). However, because of the linear character of this equation, simpler schemes may be 
used without a noticeable deterioration in performance. 

The inversion of P I  or Pz2 is a straightforward task requiring the invesion of an upper and a lower 
triangular matrix resulting from the incomplete LU decomposition of A l  or A22 respectively. A1 1 is 
only factored once, while Azz is factored during each Newton step since it depends on the current 
velocity field. The MSIP scheme (although heavy in terms of storage requirements) was preferred 
among others because of its robustness and good convergence properties. Previous attempts of the 
authors based on AD1 approximate factorization schemes presented convergence difficulties. This 
was partially due to the pseudotime numerical term that AD1 introduces inherently. This term is not 
desirable when factoring the Laplacian operator of the steady "-equation. In its present form the 
algorithm is used for steady computations only. First-order time-accurate computation may also be 
performed once the linearized problem (16) is fully converged during each Newton step. However, to 
avoid error truncation in unsteady computations due to the linearization process, the time-derivative 
term must be retained within the residual expression of the o-equation. Further discussion on the 
unsteady features of the presented algorithm is beyond the scope of this paper. 
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RESULTS AND DISCUSSION 

The capabilities of the proposed method are first demonstrated on two well-documented 
incompressible Navier-Stokes cases, namely the square driven cavity" and the backward-facing 
step." The driven cavity case is used for the investigation of the convergence properties of the 
iterative solver; in the same case a parametric study of the effect of the Krylov base dimension m of 
the restarting linear GMRES(m) scheme on the convergence behaviour is also carried out. In the 
backward-facing step case the accuracy of the prediction of the characteristic lengths of the 
recirculation zones is investigated. 

The dnven cavity problem is studied for three Reynolds numbers (Re = 100, 400 and 1000) on 
three different grids (21 x 21,41 x 41 and 81 x 81 nodes). All grids are non-uniform and stretched 
close to the solid walls by means of a geometric progression rule; for the three aforementioned grids 
the distance of the first node off the wall is 3.14 x 8.73 x and 2.8 x respectively, 
while the cavity height is unity. 

The effect of the Krylov base m on convergence is studied in terms of the drop of the L2-residual 
norm of the vorticity equation versus the number of equivalent LU iterations. The latter is defined as 
the product of the number of Newton iterations and the dimension of the Krylov space used. This is in 
fact a measure of the number of factorizations employed. It is worth noting that the vorticity and 
streamfunction equations present similar convergence properties and for this reason the residual of 
the first only is examined. Table I summarizes the results from the parametric study for seven values 
m = 3, 5, 8, 10, 15,20 and 25. All runs were performed with a global time step At = 1; convergence, 
shown in terms of equivalent LU iterations, is assumed when the residual drops by eight orders of 
magnitude. The Re = 1000 case is not examined on the 21 x 21 grid since the grid is too coarse for 
this Reynolds number. For the opposite reason the study of the Re = 100 case on the 81 x 81 grid is 
also omitted. It is seen that for a given Reynolds number the optimum value of m increases with the 
size of the gnd. On the other hand, for a given grid size the optimum value of m decreases as the 
Reynolds number increases. This behaviour is expected considering that m is a measure of the 
convergence depth within each time level where a linearized subproblem is solved. Thus, when the 
grid size increases, the linear subproblem becomes stiffer and consequently a larger m-value is more 
appropriate. When the Reynolds number increases, the non-linearity of the flow is more pronounced 
and a deeper convergence of the linear subproblem is needless; this is why smaller values of m seem 
to be more effective. Figure 1 illustrates the convergence history for the Re = 1000 case on the two 
finer grids using the optimum m-values as chosen from Table I. The streamfunction and vorticity 
residuals are plotted together in order to demonstrate the aforementioned similarity in their 
convergence behaviour. Figures 2 and 3 show the horizontal and vertical velocity component profiles 
along the vertical and horizontal centrelines of the square domain for the cases Re=400 and 1000 
respectively. In the Re=400 case the 21 x 21 grid is insufficient, while the 41 x 41 and 81 x 81 
grids provide almost identical results. In the Re = 1000 case the differences between the 41 x 41 and 
81 x 81 grids are more visible and a grid-independent solution requires a finer grid. 

The backward-facing step geometry and boundary conditions were obtained from Reference 19. 
Several runs were performed in the range of Reynolds numbers from 100 to 1000. It is known from 
theory and experiments that besides the primary recirculation zone, a secondary recirculation zone 
develops on the upper wall as the Reynolds number increases. A graphical representation of the 
characteristic lengths of the two recirculation zones is given in Figure 4. An 80 x 40 grid was used 
for the present calculations and the results obtained are compared with the experimental data and the 
numerical results of Reference 19. The evolution of the characteristic lengths xl, x2 and x3 with the 
Reynolds number is shown in Figures 5(a)-5(c) respectively. It may be observed that the comparison 
with the experimental values is fairly good for low Reynolds numbers, while large discrepancies 
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Table 1. Parametric study of effect of Krylov subspace dimension m on convergence. The required number of 
equivalent LU iterations for a residual drop of eight orders of magnitude is tabulated for the driven cavity 

problem 

21 x 21 41 x 41 81 x 81 

- m = 3  84 276 144 249 528 - 
m = 5  160 425 130 345 800 2145 3675 
m=8 240 672 192 472 984 1592 2944 
m =  10 290 840 255 550 > 1000 1380 2450 
m =  15 420 > 1000 345 810 > 1000 1065 2115 
m=20 580 > 1000 420 > 1000 > 1000 1040 2620 
m=25 725 > 1000 525 > 1000 > 1000 1225 3200 

0 I I I I I 

OMEGA - 81x811 m=15 - 
PSI - 81x81/ m=15 

OMEGA - 41x411 m= 3 - -.- 
PSI - 41x41/ rn= 3 

. _  
0 500 loo0 1500 2000 2500 3OoO 

EQUIVALENT ITERATIONS 

Figure 1. Convergence history of vorticity and streamfunction equations in driven cavity problem for Re = 1000 on 41 x 4 1 
and 81 x 81 grids 

occur as the Reynolds number approaches 1000. This behaviour is expected, since in this Reynolds 
number range the flow lacks its steady two-dimensional character. Some more detailed comparisons 
of velocity and pressure field contours with numerical results obtained on unstructured grids may be 
found in Reference 20. 

Two additional test cases are selected in order to investigate the performance of the method for 
higher Reynolds numbers. The first case concerns the development of the laminar boundary layer 
along a flat plate of uniform chord at Reynolds number (based on chord) equal to 5000. A 72 x 80 
grid was generated for this computation, similar to that used by Mavriplis et al.'* The grid spacing in 
the direction normal to the wall was performed using the logarithmic law, with the first interior node 
being at a 5 x distance from the wall. The inlet flow plane was placed two chords upstream 
from the flat plate leading edge. The calculated velocity profiles tangential and normal to the wall as 
well as the shear stress profile are non-dimensionalized in terms of the laminar boundary layer 
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Figure 2. Horizontal and vertical velocity profiles along vertical and horizontal centrelines of cavity for Re = 400 

1 

0.75 

0.5 

0.25 

0 

-0.25 

-0.5 

-0.75 

-1 
-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 

Figure 3. Horizontal and vertical velocity profiles along vertical and horizontal centrelines of cavity for Re= 1000 

x3 

X I  

Figure 4. Recirculation zones in case of backward-facing step 
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Figure 5. Evolution of characteristic lengths with Reynolds number: 0, experiment; + , Reference 19; x , present predictions 

similarity laws and are compared with the Blasius solution in Figures 6-8. The comparison is 
performed at 30 per cent, 40 per cent, 50 per cent, 60 per cent and 70 per cent of the chord. The 
agreement between the calculated profiles and the semianalytical Blasius solution is very good, even 
at the 30 per cent and 70 per cent locations which are affected by the leading edge presence and the 
outflow boundary conditions respectively. 

The last test case deals with the NACA 00 12 isolated aerofoil at Re = 5000 and 0" incidence. At 
this Reynolds number, which is close to the limit of steady state behaviour, a small recirculation zone 
develops in the near-trailing edge region. A computation performed by Mavriplis et a1." for the 
corresponding compressible flow with M ,  = 0.5 estimates the separation point at approximately 82 
per cent of the chord. For the incompressible case the separation point is expected to be further 
downstream. A 249 x 61 C-type grid with 165 nodes on the aerofoil was used for the present 
computation (Figure 8), with the minimum first-node distance from the profile being of the order of 
5 x of the chord. The cell aspect ratios in the wake region near the outflow boundary are of the 
order of 1000 : 1, making the computation particularly stiff. The computed C, and Cf distributions 
along the profile are shown in Figures 9 and 10 respectively. From the Cf distribution (which is 
directly related to the vorticity on the wall) the separation point was predicted at 93.3 per cent of the 
chord. One may notice the sharp peak of the Cf curve in the near-leading edge region, which is 
usually underpredicted by any primitive variable solver. Since the vorticity field is directly related to 
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Figure 6. Comparison of predicted tangential velocity profiles (*) with Blasius solution (-). Flow along a flat plate 
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Figure 7. Comparison of predicted normal velocity profiles (*) with Blasius solution (-). Flow along a flat plate 
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Figure 8. Comparison of predicted shear stress profiles (*) with Blasius solution (-). Flow along a flat plate 
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Figure 9. Predicted distribution of cp. NACA 0012, Re = SO00 
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Figure 10. Predicted distribution of cf. NACA 0012, Re=5000 

the stagnation pressure field (the w2 source term in (4) and the aW/as term appearing in the stagnation 
pressure boundary condition), an underprediction of the vorticity in the near-leading edge region may 
also affect the accuracy of the pressure coefficient computation. 

In the last two problems optimum convergence was obtained by means of a Krylov subspace 
dimension equal to 15. In both cases convergence was assumed when the streamfunction and vorticity 
residuals had dropped by five orders of magnitude. 

CONCLUSIONS 

A formulation for modelling two-dimensional steady incompressible viscous flows was presented. 
This formulation is based on the coupled solution of the streamfunction and vorticity equations via a 
Newton-like linearization scheme. A preconditioned GMRES algorithm is used for handling the 
resulting system of partial differential equations. The vorticity wall boundary condition is treated 
implicitly in a consistent way with a finite volume discretization scheme which is used in the interior 
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of the computational domain. Once the correct kinematic field has been obtained, the pressure field is 
calculated through the numerical integration of a convection-diffision equation in terms of the 
stagnation pressure. 

The accuracy and robustness of the method are assessed through several computations, which were 
performed for a number of well-documented test cases and at various Reynolds numbers. It is 
demonstrated that the appropriate selection of the Krylov subspace dimension m is critical for the 
efficiency of the algorithm. In the cavity problem examined, the recommended values of m are in the 
range m = H 5 ,  depending upon the size of the mesh and the flow Reynolds number. The optimum 
value of m increases with the grid size and decreases with the Reynolds number. 
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